2018/12/26

How a broken gene accelerates genetic degradation

Human genome is rapidly degrading due to genetic errors - MTHFR gene mutation is a critical defect

https://mthfrgenesupport.com/2018/07/mthfr-gene-mutation-defined-for-your-health-what-is-mthfr/

Excerpt: "An MTHFR gene mutation can replace one amino acid for another within the MTHFR enzyme, leading to a change in function. The MTHFR gene mutation alters the chain of amino acids that make up the MTHFR enzyme changing its overall shape. It’s important to understand that an enzyme’s shape gives rise to its function. So for example, the MTHFR C677T means that at place 677 on chromosome 1, the Cytosine has been changed to a Thymine. This change causes the amino acid sequence to change that makes the MTHFR enzyme.The result is a dysfunctional enzyme (it’s slower) and less 5-methylfolate production.
 
Methylation cycle is a very complex biochemical pathway.

The overall shape of the MTHFR enzyme varies based on what MTHFR gene mutations are present. Each unique mutation has a different impact on how the MTHFR enzyme performs within the body. There are currently 34 different known MTHFR gene mutations. The two most researched mutations are C667T and A1298C, which are the mutations we focus on most.

Is There One Type Of MTHFR Gene Mutation?

Depending on the mutation you have the consequences are slightly different. Each mutation follows a similar trend towards less methylation within the body or less active folate production (5-MTHF). If a mutation is present, the enzyme can have a 20% to 70% loss of function.

Since everyone has two copies of each gene (one from each parent), loss of function depends on whether there are one or two copies of the MTHFR gene mutation present.

One copy of a gene = Heterozygous (C677T= ~40% loss, A1298C=~20% loss) (This means you have one copy from mom OR dad)

Two copies of a gene = Homozygous (C677T=~70% loss, A1298C=~40% loss) (This means you have one copy from both your mom AND dad)

One copy of both C667T and A129C = compound heterozygous = ~50% loss

(This means mom and dad each gave you one copy of C667T or A1298C)

In general, less methylation occurs in people who have two copies of an MTHFR gene mutation.

MTHFR Mutations = Less Methylation

Methylation is responsible for turning multiple processes within cells “on or off”.

Proper methylation (adding/removing methyl groups (CH3) from molecules) within the body ensures cells are doing their jobs.

Think of methylation as a master switch. Any biochemical product that ends in MT is a methyltransferase. Methyls act as a switch for methyltransferases, they make them stop and go. Methyltransferases have important biochemical roles in our bodies. For example:
The breaking down of toxic oestrogens through hormone production via COMT
The health of cellular membranes and energy through choline production via PEMT
For a more indepth understanding of the importance of methyltransferases click here (your methyltransferase article))

When methylation is not working or down regulated, the body is not able to produce correct responses to the environment, damaging the body. Certain process within cells will be turned on or off for too long, leading to an impaired ability to:

  • Get rid of toxins (detoxification)
  • Repair and rebuild DNA/RNA
  • Produce and process hormones
  • Build immune cells
  • Repair cell membranes
  • Turn the stress response on and off
  • Metabolize fat
  • Produce energy
  • Recycle and build neurotransmitters
When these vital cellular processes are not working correctly, adverse symptoms can arise such as: cardiovascular disease, impaired immunity, chronic inflammation, diabetes, anxiety, depression, chronic fatigue, cancer, fibromyalgia infertility and miscarriages. Problems with methylation will amplify the symptoms of existing autoimmune and psychiatric conditions. For a more in depth analysis about the symptoms of MTHFR mutations click here.
(mthfr symptoms / conditions article)

It is important to know if you have a mutation in the MTHFR gene. Approximately 50-65% of the population has an MTHFR gene mutation."


My comment: MTHFR mutation is a serious example of genetic degradation. This common genetic error accelerates genetic degradation because it affects the methylation cycle. It typically results in hypomethylation. Methylation stabilizes the genome and RNA molecules. Hypomethylation is strongly associated with aberrant methylation profiles that lead to problems with cellular differentiation programs, gene expression and DNA transcription. It's obvious that MTHFR mutations increase the risk for having more mutations. Some of them end up in germ line.

People living with MTHFR genetic defect need to take care of proper nutrition and healthy life style. In this way they can mimimize the risks the mutation causes.

There are 561'119 gene-disease-associations in human genome at population level but the number of random beneficial DNA mutations is close to zero. Evolution is not happening.